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In the above examples, each segment (i.e., basis func-

tion) for operator elements l~,n in (8) and (9) has been

subdivided into three subsegments, with weighting ap-

proximating a triangle function as suggested by Bar-

rington [6]. In doing so, the l~,n are more accurate and

the number of segments can be reduced by one half

without an apparent increase in error. In fact, in all the

examples above, no more than 30 segments are used on

both the discontinuity and the waveguide walls.

For simplicity and for comparison with the available

exact solutions, only the fundamental TEO1 mode has

been assumed propagating. It is easy to see, however,

that higher TEw modes can also be assumed to propa-

gate without unduly increasing the computation time.

For each additional mode, two field elements j~, cor-

responding to the reflection and transmission coeff-

icients of the additional mode, are needed. The extra

computation is therefore not much more than req’uired

by having two extra segments on the waveguide walls.

Finally, it is to be pointed out that the present

method, as well as most other numerical methods, is

suitabl’e for treating waveguide with electrically small

dimensions. As the guide gets larger, the ray optics

method [1 ]– [4 ] becomes superior.
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Diffraction of a Wave Beam by an Aperture

KAZUMASA TANAKA, MASARU SHIBUKAWA, AND OTOZO FUKUMITSU

Abstract—The diffraction field of a wave beam from a circular
and a rectangular aperture is obtained in the Fresnel region by using
the Huygens-Kirchhoff approximation. The diffraction field in the
Fraunhofer region can be obtained simply by replacing a parameter.

The diffraction field is then expanded into a series of beam mode
functions.

From the field distributions and the expansion coefficients,

wtilch represent the coupling of the incident beam to the various

modes in the diffraction field, the effects of an aperture on the
incident beam can be known. With this mode expansion method, the

conditions for optimum coupling between fundamental modes are

obtained and solved numerically.

1. INTRODUCTION

T

HE output wave beam from optical structures,

like Fabry–Perot resonators or optical transmis-

sion lines, can be described by Hermite–Gaussian

[1] or Laguerre-Gaussian [2] functions.

Apertures, such as irises, are often used as elements of

these structures, but there have been few papers that
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discussed the effects of an aperture on the wave beam.

Only the diffraction losses due to the finite sizes of the

lens, or mirror apertures that are used as elements of

transmission lines [2] or of resonators [3], have been

discussed.

The diffraction from an aperture is one of the funda-

mental problems in electromagnetic field theory and

many detailed theories have been compiled for plane

wave or spherical wave incidence. The main reason why

the diffraction problem for a wave beam has not yet

been discussed may be explained by the complexity of

the beam wave functions. Up to the present knowledge

of the diffraction field of plane waves has been applied

to this case.

But, as is well known, if a wave beam of an optical

structure is incident on another system, a set of modes

of the system is excited or the parameters of the in~cident

wavt beam are transformed into different beam parame-

ters [4]. For example, a thin lens transforms these

parameters from one set to another. These effects {cannot

be explained by the analogy of plane wave diffraction.

For this reason, the diffraction problems of CLwave

beam from a circular and a rectangular aperture are dis-



750 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, NOVEMBER 1972

cussed here. The diffraction field is obtained by using x. x
the Huygens–Kirchhoff formulation.

From the diffraction field, the field variations in the

Fresnel region and the half-power angle, which is one

of the important parameters, are obtained.

This diffraction field is then expanded into a series of

orthogonal beam mode functions. The expansion coefi. z
cients represent the beam mode transmission and con-

‘l’.
version coefficients or the mode coupling coefficients of

the aperture.

It becomes a problem of importance to find out the

conditions to make some specified coefficient maximum. (a)

In this paper the power coupling coefficient between

fundamental modes is considered. This paper treats -..

mainly the diffraction problems for circular geometries,
--- I

while those for rectangular ones are discussed briefly.
------pa ,

II. DIFFRACTION FIELD
. -------- T------- _--- I -..

--

A. Circular Geometries 2:-Z, 1
When an electromagnetic field F(r, 8, z) is incident on

Z’z.
(b)

a plane aperture, which is located at z = ZO as shown in

Fig. 1 (a), the diffraction field U(r, d, z) in the Fresnel
Fig. 1. Geometry of the problem. (a) Coordinate

sWtem. (b) I ncldent wave beam.
region is, by using the scalar Huygens–Kirchhoff approx-

imation, given by [.5] where G =2 for rn=O, 6.=1 for m#O

L’(?’, 0, z) = -
jk

—— exp [–jk(z – zo) 1
27r(z – 20)

“s [F’(ro,60,zo)exp –
jh

so 2(Z – 20)

1~{r’+ r02 - ‘2rr0 cos (0 - 60)} r0d70d30 (1)

where k = 27r/i is the wavenumber of the field and SO

represents the aperture.

In the near zone, the diffraction field must be calcu-

lated rigorously, but for optical waves, which are our

lmain concern, this region is of little importance. Schell

and Tyras [6] have used a slightly different diffraction

formula. But if the wavelength of the field is small

compared with the dimension of a cliff ratting object,

the Huygens–Kirchhoff formula is, as is well known,

a good approximation to the rigorous diffraction prob-

lem [7].

Let the incident field F be a wave beam ~,~. that is

given by [2]

2(Z + z,)
g=

kw,2
(3)

and ~%m (x) are the generalized Laguerre polynomials de-

fined by

()

?z+m (—x);
L.”(x) = 5 —t~

‘i=o n—i .
(5)

~~~) = ~+~c~-i is the binomial coefficient.

This wave beam ~~~(r, 0, z) has the smallest spot size

w, at z = –z, as shown in Fig. 1(b).

The following case is considered here. The beam is

incident normally on a circular aperture whose radius is

a, and the propagation axis of the incident beam is coin-

cident with the axis that passes through the center of

the aperture.

Substituting~~n for Fin (1) ,we obtain the correspond-

ing diffraction field U~., which is, after integrating with

respect to Oo, given by

U.,n(?’,0, 2’)

d
Zn! —

—— exp [ –jk(z + z.)] ~~ cos (m@
mn(n + m) ! 2—20

[

jkr2
.exp j(2n + m + 1) tan–l to” —

2(Z – 20)1

1

1
– j ; ?p.y Cos (Wze) (2)

“exp(-:’02T2’02)Jm(::) ’”0
(6)



TANAKA et d.: DIFFRACTION OF A WAVE BEAM 2’51

where ~0 and ~0 represent the values of .$ and q at the

position of the aperture, Jm(x) is the nzth-order Bessel

function, r’ is defined by

~z =
~k

uo~ + U02 = 1 + j& (7)
?lOqz — Zoj ‘

The integration in (6) can be done most directly by

expanding L.rn(qo2r02) and J~(krrO/z —ZO) into power

series [8]. But here another method is used that is much

more convenient for further discussions.

The Bessel function is related to the generalized

Laguerre polynomials by [9, p. 189]

In this formula, let

(9)

where A 2 is, in this case, arbitrary and independent of

the variable ro. Then

Substituting this into (6), we obtain the diffraction

field 11~~ given by

Umn(?’, e,z)

d 2tL! kj~+ 1—— exp [–jk(z + 2s) ]
mm(?z + m) ! 2qo(z – z,)

[

jkrz
.cos (mO) exp j(2n + m + 1) tan–l &O —

2 (z – Zo)1
“{z&Jm=’3%‘2 }“,=0 *=O (P + m) ! 4A2T?02(Z – ZOF

‘( ) ()n+!m (—l)Q(p + q + W)! 2 “+Q+~+l
——

n—q q! z

where

k2

B=T2+
2qozA2(z – ~ “

(12)

This gives us the diffraction field of a wave beam in

the Fresnel region from a circular aperture whose radius

is a. In this expression the parameter A 2 is included. The

diffraction field lJ~. must be independent of A2. This

can be seen from (10).

To calculate the field numerically this parameter can

be chosen arbitrarily. For example, if we let A 2 be large

30 -

20 -

10 -

I (Z-ZO) cm
t [ I

o 10 20 30 4 c1

Fig. 2. Field distributions on the propagation axis. The incident
beam is t~e fundamental mode whose parameters are as follows.
A = 6328 A, w, =0.71 mm. The aperture is put at the position of
the beam waist. B is the ratio of the aperture radius to the spot size.

enough, (11) becomes

umn(l’,e,z)

[

jkY2
. cos (w@ exp j(2n + m + 1) tan–l go — —

2(Z – :ij 1

This coincides with the result obtained by direct ex-

pansion of L.~(x) and ~~(x) into power series [81.

The result, which includes an infinite series, seems

rather troublesome for numerical computations. How-

ever, in paraxial cases, which are our main concern, this

series converges fast enough.

Fig. 2 shows the distributions of the diffraction field

on the propagation axis for fundamental mode incidence

(m= n= O). ~ is the ratio of the aperture radius a to the

spot size zoo of the incident beam at the position of the

aperture, that is, O = a/wO.

M!’hen ~ is larger than 2, the effects of the aperture can

hard ly be noticed. In other words, if the radius of the

aperture is larger than twice the spot size of the incident

beam, the effects of the aperture are negligible, as far as

the field distributions on the axis are concerned.

Yt’hen (z – ZO) is large enough the fluctuations on the

propagation axis vanish and the field varies in inverse

proportion to (z — zO). This region is regarded as the

Fraunhofer region.

The far field is obtained if \ve use the Fraunhofer ap-
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I.0

Fig.3. Half-power angle O~of thediffraction field for fundamental
mode incidence. 8* is the half-power angle of the incident beam.
l~henk andw. are fixed, Igol is proportional tothe distance be-
tween the positions of the smallest spot size and an aperture.
p=a/wO=const. means the variation of a with .fo because
Wo=W,dl +:02.

proxirnation of the diffraction formula (l). If Tz is re-

placed with uO’, (11) or (13) represents the diffract’. i

fieldin the Fraunhofer region.

From the far field, the important half-power angle

Oi is obtained numerically. Thehalf-power angle is the

full angle in a meridian plane between the two directions

in which the power radiated is one-half the maximum

value [1].

Fig. 3 shows d+ for fundamental mode incidence nor-

malized with respect to the half-power angle Oh of the

incident beam. In some cases 0+ can be smaller than Oh.

This may apparently seem to contradict the diffraction

phenomena. But Oh is defined for the fundamental mode

and, as will be shown in Section III, the diffraction field

can be considered as the superposition of the funda-

mental mode and its higher modes. At any specified

point, each higher mode may contribute either construc-

tively or destructively to the fundamental mode de-

pending on the incidence configurations.

Therefore, under certain incidence configurations, O*

can be smaller than d~. In this case, the far-field spread-

ing angle of the wave field is reduced by an iris, because

the diffraction field behind the iris can be regarded as

being radiated from a larger aperture than the original

field.

This parameter f3i also shows the effects of the aper-

ture on the incident beam. If 01 is approximately equal

to Oh independently of .$0, the effect may be almost neg-

Iigil]le. This occurs when (3 is larger than 2, which is in

agreement with our earlier comment regarding the field

distribution.

B. Rectangular Geometries

The method adopted to obtain the diffraction field for

circular geometries can be also used in this case. Here

only the results of the diffraction field from a square

aperture for fundamental mode incidence will be shown.

The incident beam is, in this case, given by [1]

400(z, Y, Z) = -&-p [–~Mz + Z8)I

. exp [–*qz(l + jg)($z + yz) + j tan–l $] (14)

where ~ and rl are defined by (3) and (4), respective y.

The diffraction field is obtained similarly as in the case

of circular ones, if the formula for rectangular geometries

is used. The result is given by

~ ‘m
Voo(x, y, z) = — ————exp [–jk(z + z,)]

Ad; z – Zo

[
. exp j tan–l to — ~(z~: Zo) (z’+ y’)] g(x, Z)g(y, z) (15)

where

2“ [Vor;:zo)llr?;‘1’)g(u, z) = — ~ H,,

qi)l- t=o

and 2a is the length of the side of the aperture. H~ (x) are

the Hermite polynomials defined by

[m/2I (– l)l~!

H.(z) = ~ ~m— 2 t

2%!(??Z– 2t) ! “
(17)

t=o

The behaviors of this diffraction field are quite similar

to those of circular geometries [10].

II 1. MODE COUPLXNG COEFFICIENTS

When a wave beam of a certain optical structure is

incident on another system, a set of modes of this latter

system is excited. Let the diffraction field for the inci-

dent beam $~~ of unit power be represented as a super-

position of Cnnmn*mm. The set ~~~~ ) may not, in gen-

eral, be coincident with ~i~~ ~. The beam parameters of

~~~~) are denoted as wS, z,, etc. The complex ampli-

tudes ~ C~.mn~ are defined as the coupling coeffi-

cients [4].

To evaluate these coefficients, the field distributions

in a certain plane, where z is constant, are equated. In

our case, this can be written as follows,

?.lm.(t’,e,z) = ~ Cm.-jmn(r, e,z). (18)
rnln

Using the orthonormality of ~~mn ], we obtain the
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coefficients given by

Sscmnrnn = m 2’ Umn(r, e, z)+mn*(r, e, z) drdO (19)
o 0

where the asterisk denotes the complex conjugate.

Andrade and Thomas [11] calculated this coefficient

without taking diffraction effects into considerations,

while Nemoto and Makimoto [12] have proposed the

method of calculating the coefficient without obtaining

the analytical form of the diffraction field.

Here, for the consistency of the theory, (11) is used

for the calculation of (19). If we substitute (11) into

(19), the coefficients are given by

.exp [–jk(z. – z,) +j(2n + m + 1) tan–l to

– j(2n + m + 1) tan-’ f]

“ 55 ‘- l/~;:;!: ‘q::
p=o q=o

“G)’+q+m+’{ii%+d”

m

!?)

“e+n’cr’)Lprn(.42r2)Lnm(n2r2) dr

for m=m, and

Cmnrnn = 0

for m#m. Here C is defined by

jk
C=l–j<+——”

n2(z — zo)

The integral in (20) can be rewritten as follows,

‘o”{2qo(~~zo)m(nr)m+

“ex+:n2cr2)Lm(A2’2)Lnm@2r2)dr

sco

exp ( — x) xmLpm
o (%3 Lnm(%x

We choose the parameter A 2 as follows,

(20)

(21)

(22)

(23)

(24)

753

and use the formula [13]

()Lnm(xy) = ~ n ; m (1 – x)%n-’Ln_,~(y) (2.5)
t=o

then the coupling coefficients are given by

c~mn=’i(n:m,!i(n;:,!e’p[-j’(zs-z)
+j(zfl + m + 1) tan-’ tO +j(m + 1) ~

– j(2fI + m + 1) tan-’ ~]

“ 55 ‘-l)*(::,q ‘m)!(: g
‘=0 q=o . .

“Cn(:l+q+”+’(:)+”+’
“(%Y-’{4,02A;:-Z0,2}P

following relations,

(26)

Using t le

c=–
k ‘xp[-~tan-’{’-(z:zo)}]}] ’27)ncln(z — 20)

{
tan–l & -- tan–l f –

k

nz(z — zo) }

k
= t,>n–l – tan-l ~ (28)

n’(z – Zo)(l + ~2) – k< =

we finally obtain the coupling coefficients given by

c~”n=/(flJ!w)!/(mY!m)! exp[-’k(zS-zS)

+ j(2fi + m + 1) tan-l go

– j(2n + rn + l)tan-l ~0]

“ 2 i ‘-1)’+’(:,: q ‘m)!(::;)
p=o g=o

“cm3’+’;m:l(:rl

.[I-.XP(+O’.’B)

~ ‘~ :(?y]. ‘(29)
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Ic::l

1.0 -

0.8 -

0.6 -

0,4 -

0,2 -

Fig. 4. Transmission and conversion coefficients for fundamental
mode incidence. The aperture is put at the position of the beam
waist.

These coefficients are independent of z. To see this

we use (12) and (24), then the parameter B is given by

~ = T702 + n02 . &oq02 – f0n02

+3 no, – “ (30)
702

This shows that B is independent of z; therefore, the

coupling coefficients given by (29) are also independent

of z.

If the sets { t,~~ } and {+wI] are identical, namely, if

Z8 = ZS and we = wS, the coupling coefficients represent

the transmission and the conversion coefficients of the

aperture. In this case, the coefficients are written

as C~nmn.

Fig. 4 shows some of these coefficients for funda-

mental mode incidence. When 6 is larger than 2 the

mode conversion coefficients ICOOO1, C0002, C0003, etc., =

almost equal to zero, while the transmission coefficient

COOOOk approximately equal to unity. This is the most

convincing proof of the fact that for /3 larger than 2 the

effects of the aperture are almost negligible.

For rectangular geometries the coupling coefficients

are, for fundamental mode incidence, given by

coij~n = Comcon (31)

where COm are given as follows,

Com= —T)’$w:ex’[-j’:‘z’-“)

-“T+’:tan-’’+(2’+:)’a”0101

[
. $~Kpq+ ii ii Km] (32)

p=o *=(1 p=t+1 q=’p—t

d

z? (– l)p(2nOa)2p-2Q( /q02a2B)2P+1
Kpq = —- (33)

; i2p + l)2Qq!(2p — zq) !(~ + g — ‘P)!

for m = 2t, and

Cl)m = o (34)

for m = 2t + 1. These coefficients do not depend upon z

either.

IV. SOME CONSIDERATIONS ON THE POWER COUPLING

BETWEEN FUNDAMENTAL MODES

The coupling coefficients obtained in the previous sec-

tion are now applied to the following problem. For given

position and radius of the aperture, and incident wave

beam, how can we determine the parameters w, and z.

of the set { t!/mn ] to maximize some specified coupling

coefficient?

In order to simplify the calculations, we discuss here

the power coupling coefficient between the fundamental

modes. This coefficient is given by

\ Coooo ]2 =
4q02a%Oza2

(q02a2 + n02a2)2 + (f0q02a’ – ~On02a2)2

. [1 + exp (–qo’a’ – n02a2)

— 2 exp { –*(qo’a’ + no’s’) }

ocos * (&oT02a2 — &0n02a’) ] (35)

for circular geometries, and for rectangular geometries

it is

I Coooo 12 =
47102a2n02a2

(q02a2 + n02a2)2 + (t0q02a2 – ~On02a2)2

o[G’G*z] (36)

where

G = 2@[v’(m’a2 + n02a2) – j(&OqO’a2 – ~On02a2)] (37)

@(x) is the error function defined by

1’
@(x) = — sexp ( — ~t2) dt. (38)

d% 0

In (35) and (36) the coefficients of the brackets coin-

cide with the coupling coefficients obtained by Kogelnik

[4] for optical modes when the aperture is infinitely

large. If we let a be infinite, both brackets become

unity. Therefore, they show the effects of the finite

aperture.

To maximize these expressions, the following condi-

tions must be satisfied:

&7102a2 = ~ono2a2 (39)

(qo’a’ – no2a2) [1 – exp { –*(qo2a2 + n02a2)] ]

+ n02a2(~02a2 + n02a2) exp [– *(qo2a2 + n02a2)] = O (40)

for circular geometries and

&0q02a2 = ?jnozaz (41)

—

(vo2a2 – n02a2) /~ @(~7702a2 + n02a2) /q02a2 + no2a2

+no2a2(q02a2 + noza’) exp [–~(qO’a2 + no2a2)] = O (42)

for rectangular geometries. The uniqueness of the solu-

tions of these equations can be proved analytically for

(39) and (40), and numerically for (41) and (42). Fig. 5

shows the solutions of both of them.
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I .0 2.0 3.0

Fig. 5. Solutions for (40) and (42). (Overbar in figure same as bold
face in text,)
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~oo
/00 m.,
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/
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I
I

/

I
I
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/

I
/

, D
1.0 2,0

Fig. 6. iMaximum power coupling coefficients between fundamental
modes. (Overbar in figure same as bold face in text.)

From this result, the optimal values of beam parame-

ters w. md z. are obtained from the following expres-

sions:

(43)

kfoa’
— ZQ.

‘8 = n02a2(l + tj2)
(44)

The maximum coupling coefficients are shown in Fig. 6.

Further discussions of this problem will be applied to

the problems of resonators with an internal aperture

[13], and of the transmission lines in which lenses and

apertures are used.

V. CONCLUSIONS

The cliffraction field of a wave beam from a plane

aperture is obtained. From its intensity distributions on

the propagation axis the diffraction effects of an aperture

on the wave beam can be almost known.

The mode expansion method, however, provides us

with more theoretical and quantitative knowledge of the

effects. The results show that the effects are negligible

if the aperture radius is larger than twice the spot size

of the incident beam, and this result is also valid for

rectangular geometries.

In this paper only one of the problems that could be

treated with the mode expansion method is considered.

The expansion coefficients are also useful for the analysis

of optical structures.

Investigations of the case where the propagation axis

and the axis that passes through the center of the aper-

ture do not coincide are also of practical importance.

This problem can be solved in the same way.
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