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In the above examples, each segment (i.e., basis func-
tion) for operator elements /., in (8) and (9) has been
subdivided into three subsegments, with weighting ap-
proximating a triangle function as suggested by Har-
rington [6]. In doing so, the [,,., are more accurate and
the number of segments can be reduced by one half
without an apparent increase in error. In fact, in all the
examples above, no more than 30 segments are used on
both the discontinuity and the waveguide walls.

For simplicity and for comparison with the available
exact solutions, only the fundamental TEy; mode has
been assumed propagating. It is easy to see, however,
that higher TEoxy modes can also be assumed to propa-
gate without unduly increasing the computation time.
For each additional mode, two field elements fu, cor-
responding to the reflection and transmission coeffi-
cients of the additional mode, are needed. The extra
computation is therefore not much more than required
by having two extra segments on the waveguide walls.

Finally, it is to be pointed out that the present
method, as well as most other numerical methods, is
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suitable for treating waveguide with electrically small
dimensions. As the guide gets larger, the ray optics
method [1]-[4] becomes superior.
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Diffraction of a Wave Beam by an Aperture

KAZUMASA TANAKA, MASARU SHIBUKAWA, ano OTOZO FUKUMITSU

Abstract—The diffraction field of a wave beam from a circular
and a rectangular aperture is obtained in the Fresnel region by using
the Huygens-Kirchhoff approximation. The diffraction field in the
Fraunhofer region can be obtained simply by replacing a parameter.
The diffraction field is then expanded into a series of beam mode
functions.

From the field distributions and the expansion coefficients,
which represent the coupling of the incident beam to the various
modes in the diffraction field, the effects of an aperture on the
incident beam can be known. With this mode expansion method, the
conditions for optimum coupling between fundamental modes are
obtained and solved numerically.

I. INTRODUCTION

HE output wave beam from optical structures,
Tlike Fabry—Perot resonators or optical transmis-
sion lines, can be described by Hermite—Gaussian

[1] or Laguerre-Gaussian [2] functions.
Apertures, such as irises, are often used as elements of
these structures, but there have been few papers that
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discussed the effects of an aperture on the wave beam.
Only the diffraction losses due to the finite sizes of the
lens, or mirror apertures that are used as elements of
transmission lines [2] or of resonators [3], have been
discussed.

The diffraction from an aperture is one of the funda-
mental problems in electromagnetic field theory and
many detailed theories have been compiled for plane
wave or spherical wave incidence. The main reason why
the diffraction problem for a wave beam has not yet
been discussed may be explained by the complexity of
the beam wave functions. Up to the present knowledge
of the diffraction field of plane waves has been applied
to this case.

But, as is well known, if a wave beam of an optical
structure is incident on another system, a set of modes
of the system is excited or the parameters of the incident
wave beam are transformed into different beam parame-
ters [4]. For example, a thin lens transforms these
parameters from one set to another. These effects cannot
be explained by the analogy of plane wave diffraction.

For this reason, the diffraction problems of a wave
bearn from a circular and a rectangular aperture are dis-
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cussed here. The diffraction field is obtained by using
the Huygens—Kirchhoff formulation.

From the diffraction field, the field variations in the
Fresnel region and the half-power angle, which is one
of the important parameters, are obtained.

This diffraction field is then expanded into a series of
orthogonal beam mode functions. The expansion coeffi-
cients represent the beam mode transmission and con-
version coefficients or the mode coupling coefficients of
the aperture.

It becomes a problem of importance to find out the
conditions to make some specified coefficient maximum.
In this paper the power coupling coefficient between
fundamental modes is considered. This paper treats
mainly the diffraction problems for circular geometries,
while those for rectangular ones are discussed briefly.

II. DirFracTiON FIELD
A. Circular Geometries

When an electromagnetic field F(r, 6, 2) is incident on
a plane aperture, which is located at 2=2 as shown in
Fig. 1(a), the diffraction field U(z, 8, 2z) in the Fresnel
region is, by using the scalar Huygens~Kirchhoff approx-
imation, given by [5]

ik
[](7’7 0: Z) = _271_(:__2—) €Xp [_]k(z - ZO)]

[ ronpozo [ i
. 7(r0,80,20) €X —_————
< 0,00,20 P 2(2_20)

[

. {72 + 7¢? — 2#rq cos (6 — 00)}:] rodrod8y (1)

where k=27/\ is the wavenumber of the field and S,
represents the aperture.

In the near zone, the diffraction field must be calcu-
lated rigorously, but for optical waves, which are our
main concern, this region is of little importance. Schell
and Tyras [6] have used a slightly different diffraction
formula. But if the wavelength of the field is small
compared with the dimension of a diffracting object,
the Huygens—Kirchhoff formula is, as is well known,
a good approximation to the rigorous diffraction prob-
lem [7].

Let the incident field F be a wave beam ¥,,, that is
given by [2]

Yan(?, 8, 2)

2n!

= Vm exp [—jk(z + z,) [n(nr) Ly (n?r?)

3

1
exp I:— 57]21'2 +7j(2n 4+ m + 1) tant ¢

—7 % n2£r2:| cos (mf) (2)
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Fig. 1. Geometry of the problem. (a) Coordinate
system. (b) Incident wave beam.
where €, =2 for m=0, ¢,=1 for m=0
2(z + z,)
b= 3
oy (3)
V2
w1 + £2
and L,m(x) are the generalized Laguerre polynomials de-
fined by (=)
r /n+ m\ (—x)?
Lo = 2 (1T )
=0 \¥% — 1 1

(“*™ = .. Cn_: is the binomial coefficient.

This wave beam Ym.(r, 8, 2) has the smallest spot size
w, at = —z, as shown in Fig. 1(b).

The following case is considered here. The beam is
incident normally on a circular aperture whose radius is
a, and the propagation axis of the incident beam is coin-
cident with the axis that passes through the center of
the aperture.

Substituting .., for Fin (1), we obtain the correspond-
ing diffraction field U,., which is, after integrating with
respect to 8y, given by

Unin(r, 8, 2) _
ml ] jmt1
= ——————exp | —jk )| ——— 6
/‘/rem(n +m)lexp[ jke + =) Z_Zocos (mb)
‘ kr?
-exp |:j(2n +m + 1) tan= & — —~—:|
2(z — 2)

f (noro)™ T La™ (0% 0?)
0

1 krro )
*eXp (—‘ —7]02727’02 ]m — d?’o
2 Z— 2

(6)
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where &y and 7, represent the values of £ and 5 at the
position of the aperture, J,{x) is the mth-order Bessel
function, 72 is defined by
ik
72 = g + __]_.,‘__,

oo> = 1+ jo. (1)
n0%(z — 20)

The integration in (6) can be done most directly by
expanding L."(no%¢*) and J.(krro/z—z) into power
series [8]. But here another method is used that is much
more convenient for further discussions.

The Bessel function is related to the generalized
Laguerre polynomials by [9, p. 189]

_ ©  Ly(x)tr
Tn(2v/Ix) = exp (—1) 2. 0 4EiZ)?

(Vix)ym  (8)

In this formula, let
k2ry?
t —_—

x = A%? = —
442z — 2)?

9)
where 42 is, in this case, arbitrary and independent of
the variable r¢. Then
( krro > I: ko2 } krro m
Im =exp| — { }
2 — % 4A4%(z — z0)% \2(z — 20)
%0 L m(A 242 E2yo? P
= (p+m)! 4A%(z — 2()*

Substituting this into (6), we obtain the diffraction
field Uny given by

Upn(r, 9, 2)
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where

n—q

(11)

k2

B=1"4+—-——.
T 2062 A%(z — 20)*

(12)

This gives us the diffraction field of a wave beam in
the Fresnel region from a circular aperture whose radius
is ¢. In this expression the parameter 42is included. The
diffraction field U,.. must be independent of 42 This
can be seen from (10).

To calculate the field numerically this parameter can
be chosen arbitrarily. For example, if we let 42 be large
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Fig. 2. Field distributions on the propagation axis. The incident

beam is the fundamental mode whose parameters are as follows,
A= 6328 A, w,=0.71 mm. The aperture is put at the position of
the beam waist. 8 isthe ratio of theapertureradius to the spot size,

enough, (11) becomes
Unn(r, 6, 2)

T 2ml .
= w m_' exp [—jk(z + 25)]
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This coincides with the result obtained by direct ex-
pansion of L,”(x) and Ja.(x) into power series [8].

The result, which includes an infinite series, seems
rather troublesome for numerical computations. How-
ever, in paraxial cases, which are our main concern, this
series converges fast enough.

Fig. 2 shows the distributions of the diffraction field
on the propagation axis for fundamental mode incidence
(m=n=0). B is the ratio of the aperture radius a to the
spot size w, of the incident beam at the position of the
aperture, that is, 8 =a/wo.

When 8 is larger than 2, the effects of the aperture can
hardly be noticed. In other words, if the radius of the
aperture is larger than twice the spot size of the incident
beam, the effects of the aperture are negligible, as far as
the field distributions on the axis are concerned.

When (z—320) is large enough the fluctuations on the
propagation axis vanish and the field varies in inverse
proportion to (z—2). This region is regarded as the
Fraunhofer region.

The far field is obtained if we use the Fraunhofer ap-

™M=

I
=3

(13)
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Fig. 3. Half-power angle 8, of the diffraction field for fundamental

mode incidence. 8y is the half-power angle of the incident beam.
When k and w, are fixed, |%,| is proportional to the distance be-
tween the positions of the smallest spot size and an aperture.
B=a/w,=const. means the variation of a with & because

W =wsv/ 1 4+&7

proximation of the diffraction formula (1). If 72 is re-
placed with o2, (11) or (13) represents the diffract’. ;
field in the Fraunhofer region.

From the far field, the important half-power angle
f: is obtained numerically. The half-power angle is the
full angle in a meridian plane between the two directions
in which the power radiated is one-half the maximum
value [1].

Fig. 3 shows 6; for fundamental mode incidence nor-
malized with respect to the half-power angle 8, of the
incident beam. In some cases §; can be smaller than 8,.
This may apparently seem to contradict the diffraction
phenomena. But 6, is defined for the fundamental mode
and, as will be shown in Section I11, the diffraction field
can be considered as the superposition of the funda-
mental mode and its higher modes. At any specified
point, each higher mode may contribute either construc-
tively or destructively to the fundamental mode de-
pending on the incidence configurations.

Therefore, under certain incidence configurations, f;
can be smaller than §,. In this case, the far-field spread-
ing angle of the wave field is reduced by an iris, because
the diffraction field behind the iris can be regarded as
being radiated from a larger aperture than the original
field.

This parameter 0; also shows the effects of the aper-
ture on the incident beam. If #; is approximately equal
to 85 independently of &), the effect may be almost neg-
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ligible. This occurs when 8 is larger than 2, which is in
agreement with our earlier comment regarding the field
distribution.

B. Rectangular Geometries

The method adopted to obtain the diffraction field for
circular geometries can be also used in this case. Here
only the results of the diffraction field from a square
aperture for fundamental mode incidence will be shown.

The incident beam is, in this case, given by [1]

$oolx, 3, 7) = I/ﬁi exp [—jk(z + 2]

rexp [—37°(1 +jO)(a® + 99 +jtan™rg] (14)
where £ and % are defined by (3) and (4), respectively.
The diffraction field is obtained similarly as in the case
of circular ones, if the formula for rectangular geometries
is used. The result is given by
i m
Voolw, v, 2) = —=
0o(®, ¥, 2) MW 7 — 7o

exp ["jk(z + Zs)]

exp [f tant gy s (et y2>] 6, 2)g(5,2) (15)

where

2 0
glu,z) = — Z H,, (16)

NoT =0

[ Jhu :I (nora)+!
noT(Z —_ Zo) (Zt + 1)'

and 2a is the length of the side of the aperture. H,(x) are
the Hermite polynomials defined by

(—1)m!
= 2ti(m — 26)!

[m/2]

Hu(x) = -2, (7

The behaviors of this diffraction field are quite similar
to those of circular geometries [10].

I1I. MopE CourLIiNG COEFFICIENTS

When a wave beam of a certain optical structure is
incident on another system, a set of modes of this latter
system is excited. Let the diffraction field for the inci-
dent beam ¥..» of unit power be represented as a super-
position of Cpa™™§mn. The set {{ma} may not, in gen-
eral, be coincident with {¥/ma}. The beam parameters of
{an} are denoted as wy, z,, etc. The complex ampli-
tudes { Cnn™"} are defined as the coupling coeffi-
cients [4].

To evaluate these coefficients, the field distributions
in a certain plane, where z is constant, are equated. In
our case, this can be written as follows,

Unn(7,0,2) = 2 Con™ma(r, 6, 2). (18)

Using the orthonormality of {¢mn}, we obtain the
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coefficients given by

cmnmn =

© 27
f f Unn(7, 0, 2)mn*(r, 6, 2) rdrd6 (19)
o Yo

where the asterisk denotes the complex conjugate.

Andrade and Thomas [11] calculated this coefficient
without taking diffraction effects into considerations,
while Nemoto and Makimoto [12] have proposed the
method of calculating the coefficient without obtaining
the analytical form of the diffraction field.

Here, for the consistency of the theory, (11) is used
for the calculation of (19). If we substitute (11) into
(19), the coefficients are given by

2n! kjmtt

- 2n!
Crat = 4/(7; + m)! (n+m)! 2n0(z — 20)
exp [—jk(z, — z,) +7(2n +m + 1) tan—1 g,
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1 ptqtm 1
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2 s=0 st
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i ol SR
2 0 2‘)’}0(Z —_ Z())

n— g

1
-exp <— p nZCr2> L(A%%) Ly™(n2?) dr (20)
for m =m, and
7 = 0 (21)
for m=#m. Here C is defined by
. Jk
C=1—-jE+ — (22)
n%(z — 2o
The integral in (20) can be rewritten as follows,
fw{ kr }m( ymt1
o 2no(z — 20)
1
-exp (—— EnzCﬂ) L,(A%2) Lym(n2r?) dr
1 { k } m( 2 )m-l—l
h 211 21']0"(2 - Zo) C
fw . <2A2x>L m(Zx)d 23
. . exp (—a)amLy ey ="\ & x.
We choose the parameter A2 as follows,
A2 = iCn? (24)

and use the formula [13]

n
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LGay) = 3 (" ' ”’) (1 — m)eiLr(y)  (25)

t=0

then the coupling coefficients are given by

n! n! .
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Using tae following relations,
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we finally obtain the coupling coefficients given by
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Fig. 4, Transmission and conversion coefficients for fundamental
mode incidence. The aperture is put at the position of the beam
waist.

These coefficients are independent of 2. To see this
we use (12) and (24), then the parameter B is given by

Come? Fomet | Eope® — Eono®

J
70? 70®

B

(30)

This shows that B is independent of z; therefore, the
coupling coefficients given by (29) are also independent
of z.

If the sets {Ymn} and {¢ma} are identical, namely, if
z,=2, and w,=w,, the coupling coefficients represent
the transmission and the conversion coefficients of the
aperture. In this case, the coefficients are written
as Cna™".

Fig. 4 shows some of these coefficients for funda-
mental mode incidence. When 8 is larger than 2 the
mode conversion coefficients Co®t, Coc®?, Coo®, etc., are
almost equal to zero, while the transmission coefficient
Coo™ is approximately equal to unity. This is the most
convincing proof of the fact that for 8 larger than 2 the
effects of the aperture are almost negligible.

For rectangular geometries the coupling coefficients
are, for fundamental mode incidence, given by

Cop™" = Cy™Cy" (31)
where C,™ are given as follows,
v (2! 2 /ne 1
Co = Za) P exp| —jk= (5 — 2
0 by /‘//B noexpl: ¥l 2(2 zs)
1 1
— jtr + 7= tan"1§, — j<2t + ——) tan—! E{l
2 2
¢ p\ R D
[ Z Zz Ky + Z Z qu] (32)
p=0 ¢=0 p=t+1  g=p—t
2 —1)2(2 2p—2g —2@ 2p+1
Kpo = /‘/_ ( )?(2noa) (v/m?a*B) (33)
T (2p + 1)29!(2p — 29)1¢ + ¢ — p)!
for m=2¢, and
Cy™m =0 (34)

for m=2t+1. These coefficients do not depend upon 2
either.
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IV. SomE CONSIDERATIONS ON THE POWER COUPLING
BETwWEEN FUNDAMENTAL MODES

The coupling coefficients obtained in the previous sec-
tion are now applied to the following problem. For given
position and radius of the aperture, and incident wave
beam, how can we determine the parameters w, and z,
of the set {an} to maximize some specified coupling
coefficient?

In order to simplify the calculations, we discuss here
the power coupling coefficient between the fundamental
modes. This coefficient is given by

4no2a’ne’a?
(n02a? + ne2a?)? + (§mo®a® — Emo?a?)?
1+ exp (—no2a? — noZa?)
— 2exp {——%(77020,2 + n02a2)}

-cos % (Emo2a? — EmoZa?)]

| Coo°°|2 -

(35)
for circular geometries, and for rectangular geometries
itis

4no2a’ny’a?
(no%a® + no®a®)? + (Eono®a® — Emo’a?)?
. [GzG*z]

| Coo® 12 —

(36)

where

G = 23[v/(1o%a® + no’a®) — j(Eino®a® — Emo®a®)] (37)
®(x) is the error function defined by

1 z

0

In (35) and (36) the coefficients of the brackets coin-
cide with the coupling coefficients obtained by Kogelnik
[4] for optical modes when the aperture is infinitely
large. If we let ¢ be infinite, both brackets become
unity. Therefore, they show the effects of the finite
aperture.

To maximize these expressions, the following condi-
tions must be satisfied:

£mme®a® = Emgla?
(no2a® — no?a?) [1 — exp { —3(no2a? + no%a?) } |
+ n02a2(n02a2 + noza2) exp [-—%(7102(12 + nozaz)] =0 (40)

(39)

for circular geometries and

£mo®a® = Emoy’a?

(41)

T
(no%a® — mo%a?) ,‘/ 2 ®(vmo*a? + noa?)v/ne%a? + noZa?
+no2a2(ne%a? + no%a?) exp [—3(no%a? + ne2a?)] = 0 (42)

for rectangular geometries. The uniqueness of the solu-
tions of these equations can be proved analytically for
(39) and (40), and numerically for (41) and (42). Fig. 5
shows the solutions of both of them.
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Fig. 5. Solutions for (40) and (42). (Overbar in figure same as bold
face in text.)
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Fig. 6. Maximum power coupling coefficients between fundamental

modes. (Overbar in figure same as bold face in text.)

From this result, the optimal values of beam parame-
ters w, and z, are obtained from the following expres-
sions:

Ws V2
e noar/1 + &2
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_ kfodg _
T n0202(1 + fo2)

The maximum coupling coefficients are shown in Fig. 6.

Further discussions of this problem will be applied to
the problems of resonators with an internal aperture
[13] and of the transmission lines in which lenses and
apertures are used.

Zo. (44)

V. CONCLUSIONS

The diffraction field of a wave beam from a plane
aperture is obtained. From its intensity distributions on
the propagation axis the diffraction effects of an aperture
on the wave beam can be almost known.

The mode expansion method, however, provides us
with more theoretical and quantitative knowledge of the
effects. The results show that the effects are negligible
if the aperture radius is larger than twice the spot size
of the incident beam, and this result is also valid for
rectangular geometries.

In this paper only one of the problems that could be
treated with the mode expansion method is considered.
The expansion coefficients are also useful for the analysis
of optical structures.

Investigations of the case where the propagation axis
and the axis that passes through the center of the aper-
ture do not coincide are also of practical importance.
This problem can be solved in the same way.
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